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a b s t r a c t

Mass spectrometry is an important technology for mapping composition and flux in whole proteomes.
Over the last 5 years in particular, impressive gains in the depth of proteome coverage have been real-
ized, particularly for model organisms. This review will provide an update on advancements in the key
analytical techniques, methods and informatics directed towards whole proteome analysis by mass spec-
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trometry. Practical issues involving sample requirements, analysis time and depth of coverage will be
addressed, to gauge how useful data-driven approaches are for solving biological problems. Targeted mass
spectrometric methods, based on selected reaction monitoring, are presented as a powerful alternative
to data-driven methods. They offer robust, transferable protocols for hypothesis-directed monitoring of
limited yet biologically significant tracts of any proteome.
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ioinformatics

© 2011 Published by Elsevier B.V.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2. Whole proteome analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1. The basic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2.2. Proteomics of simple model organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2.3. Proteomics of complex organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2.4. On the discrepancy between simple and complex organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2.5. An assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3. Technological developments in whole proteome analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3.1. Improving LC–MS/MS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3.2. Recent developments in peptide and protein fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3.3. Improvements in peptide ion fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3.4. Departing from the data-driven experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3.5. Developments in bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4. Targeted proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
4.1. SRM methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
4.2. SRM applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

5. Conclusions and perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

. Introduction the core technical issue for many endeavors in molecular biology,
proteomics differentiates itself on the basis of the number of pro-
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

Proteomics as a discipline may be defined as the monitoring
f all proteins within an organism, in both temporal and spa-
ial terms. That is, at any given point in time, what proteins are
xpressed and where are they? While this sort of question defines

∗ Corresponding author. Tel.: +1 403 210 3811; fax: +1 403 283 8727.
E-mail address: dschriem@ucalgary.ca (D.C. Schriemer).

731-7085/$ – see front matter © 2011 Published by Elsevier B.V.
oi:10.1016/j.jpba.2011.02.012
teins monitored—all vs. a select few. A comprehensive analysis
would have the advantage of avoiding bias when monitoring a dis-
ease state or a biological mechanism, and thus has considerable
appeal.
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

As the field has existed for approximately 15 years, it is reason-
able to evaluate how close we are to providing reliable methods
for proteome analysis. Can established methods be placed into
individual labs to deliver proteome characterization within a rea-
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Fig. 1. Workflow for conventional data-driven, bottom-up pr
eprinted with permission from Genome Biology.

onable budget, useful for addressing unmet problems in basic or
linical science? This review will approach such questions from
he perspective of the analytical scientist engaged in bioanaly-
is. The technical objectives of proteomics are not unlike those
ound in pharmaceutical analysis. An inspection of the FDA’s guid-
nce for industry, on the validation of analytical procedures for
rug substance monitoring, discusses standards for detection and
uantitation that really are universal. Specificity, detection limit,
recision, accuracy, repeatability and robustness require consid-
ration for any instrumental method applied to bioanalysis and
e should at least consider how modern methods in proteomics
easures up.
It could be argued that hoisting standards from pharmaceu-

ical and clinical industries upon proteomics is modestly unfair,
ut two reasons justify this approach. In the first place, clinical
nalysis remains a strong driver for proteomics thus the stan-
ards of clinical lab testing seem to offer a reasonable perspective.

n the second place, the readers of this journal may appreciate a
erspective couched in familiar terms. Should the current method-
logical approaches measure up, analytical scientists within the
isciplines targeted by this journal will find themselves in a posi-
ion where such methods require adoption in their respective labs.
heir engagement is therefore essential.

In this review, we will first consider recent exemplary work in
hole proteome analysis, specifically those focused upon eukary-

tic organisms of limited-to-high proteome complexity. We will
rovide an overview of technical solutions to the issue of sam-
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

le complexity and data analysis. To avoid duplicating excellent
eview articles in the field, we will focus upon novel recent addi-
ions to the panel of methods, considering both the analytical and
he informatics aspects of the workflow, and address practical mat-
ers related to sample amount and analysis time. We suggest that
ics experiment, here demonstrated with yeast analysis [29].

selective, targeted proteomics methods have a greater likelihood
of extrapolation to a range of clinical and biological problems, and
present a technical justification of this viewpoint, based on recent
developments in the area.

2. Whole proteome analysis

2.1. The basic method

The current analytical modus operandi in proteomics is built
upon a bottom-up approach, in which proteins are harvested from
an organism and then digested with specific proteases. This ren-
dering of protein fractions produces smaller peptides that are ideal
for mass spectrometric analysis, in a data-driven process where
peptides are dynamically selected and then sequenced using tan-
dem MS methods (Fig. 1 and numerous reviews [1–3]). A wide
variety of organisms, tissue types and biofluids have been inter-
rogated with such bottom-up proteomics methods. In most cases,
such interrogations represent “milestones” on the path to a com-
plete proteome analysis [4]. That is, advancements are applied to
a system of interest, in order to gauge the comprehensiveness of
such analyses. Solving specific research problems with complete
proteomics datasets actually remains an infrequent event, as it is
pending a heightened confidence in the research community that
depth of coverage is sufficiently exhaustive and reproducible.

2.2. Proteomics of simple model organisms
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

To this end, certain model organisms have been very useful in
gauging the progress of MS-driven whole proteome analysis, but
none more so than yeast. Early analyses based on MudPit-style
identification strategies applied to yeast established the promise

dx.doi.org/10.1016/j.jpba.2011.02.012
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ig. 2. Distribution of yeast proteins observed by TAP-based western blots,
C–MS/MS using the MudPIT strategies and 2D gel electrophoresis [6].
eprinted with permission from Nature Publishing Group.

f MS-driven proteomics [5] and ever since, proteome characteri-
ation of this organism has served as a bellwether for performance.
east is a useful test case, in part because the total number of
xpressed proteins is known. Fusion libraries for every open read-
ng frame have been generated, incorporating a high-affinity tag
sed to detect expression through semi-quantitative immunoas-
ays [6]. This census has shown that approximately 80% of the
roteome is expressed during log-phase growth (4251 proteins
hrough this strategy). MS-driven approaches, circa 2002, were
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

ot strongly representative (Fig. 2) [6] however recently, this has
mproved to the extent that both the tag-based approach and the

S-driven approaches equivalently represent the yeast proteome,
ithin error (Fig. 3) [7].

ig. 3. Yeast proteome coverage, comparing MS-based proteomics with GFP and
AP tagging methods (a) on the basis of identification overlap, where numbers are
he identified proteins by each method and in parentheses the number of suspect
pen reading frames, and (b) identified proteins, as a function of expression levels
n the cell, in terms of copy number [7].
eprinted with permission from Nature Publishing Group.
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2.3. Proteomics of complex organisms

This level of in performance has not been achieved in higher
organisms, although impressive gains have been realized. For
example, an initiative in shotgun proteomics has cataloged large
fractions of the Caenorhabditis elegans proteome, as many as 10,977
proteins or 54% of the predicted genome [8]. This represents a
near-doubling of the number of proteins identified through studies
1–2 years earlier [9], highlighting the pace of improvements in the
field.

These efforts provide more value than simply generating “cat-
alogs” of protein identifications. The product of such exercises
usually includes quantitative data, permitting a systems-wide per-
spective of the response to a specific perturbation, and comparisons
between organisms. For example, comparing the proteome of C.
elegans with that of Drosophila melanogaster reveals a remark-
able correlation between individual protein expression levels, the
latter covering approximately 65% of the predicted open reading
frames [8]. Such data also informs, in a global way, on mechanisms
of transcriptional regulation and provides a certain proofread-
ing capability for genome annotation [9–11]. Datasets arising
from these global comparisons have been instrumental in refin-
ing the assumption that transcript levels correlate with protein
levels—there is a correlation but it consistently is demonstrated to
be weak [7,12,13]. Finally, these studies highlight errors in tran-
scriptomic data – often assumed to be quantitative and robust
measures of global transcript levels – indicating that data qual-
ity issues in any large-scale initiative require careful consideration
[14,15].

No other complex, multicellular organisms (with the excep-
tion of Arabidopsis thaliana) have been probed to this depth in
singular experimental excursions, and with the level of rigor pre-
sented in the above studies. However, as the obvious appeal in
proteomics is to profile species more directly linked to drug devel-
opment and human health, proteome characterizations of tissues
derived from mouse, rat and humans abound [16–21]. Such studies
rapidly become mired within the technical challenges associated
with protein extraction and sample prefractionation, and to date no
proteomic surveys approach the comprehensiveness of the simpler
organisms.

A survey of plasma proteomics – perhaps the most complex
sample type in the field for its wide dynamic range of protein con-
centration – provides a useful means of evaluating the challenges
within bottom-up proteomics. To date, no comprehensive analysis
of plasma has been achieved, in spite of impressive efforts [22,23].
A recent review of blood proteomics in general surveys the numer-
ous attempts [24]. The plasma proteome project cataloged just over
3000 proteins using data collected from 35 member laboratories,
with only 889 considered to pass stringent identification crite-
ria [25]. One particular study illustrates the technical challenges
ahead [26,27]. Using multiple protein fractionation concepts and
LC–MS/MS of the resulting peptides resulted in the identification
of 2254 proteins. The plasma proteome is of indeterminate size,
because it also represents dynamic processes that shed cellular
proteins into circulation, so it is difficult to gauge completion [22].
However, this analysis required significant amounts of serum pro-
tein to achieve this level of characterization (146 mg) and greater
than 26 days of instrument time. Interestingly, parallel efforts in
the analysis of mouse plasma have been able to achieve moderately
higher identification rates than from human samples [17].

Under the guidance of the Human Proteome Organization
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

(HUPO), a distributed effort has been mounted to catalog pro-
teomes in key human tissues, which has the advantage of
accumulating data drawn from numerous labs, all following stan-
dardized protocols. For example, the Human Liver Proteome Project
has amassed a database of 13,222 protein entries, containing an

dx.doi.org/10.1016/j.jpba.2011.02.012


 IN PRESSG

P

4 al and Biomedical Analysis xxx (2011) xxx–xxx

i
[
o
f
t

2

d
p
l
t
o
t
s
a
t
y
p
e
p
t
F
p
f
b

b
n
y
g
g
t
p
I
a
i
g

t
a
b
n
a
m
r
(
i

b
s
i
a
b
s
i
t
t
a
o
c
f
t
t
i

Fig. 4. General trends in how key analytical variables influence the probability of
detecting a protein in a sample of specified protein complexity (# of proteins) and
sample dynamic range. (a) Increasing the sample load in a single analysis for any
given proteomics method (e.g. 1D LC–MS/MS). (b) For a given sample load, increasing
the number of replicate analyses. (c) For a given sample load, increasing dimension-
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ndex of the underlying peptide identifications supporting this list
28]. Organellar and protein-level fractionation has proven to be
ne of the key methods by which to increase the depth of coverage
or the liver proteome. This finding is holding true in most cases of
issue proteome profiling.

.4. On the discrepancy between simple and complex organisms

Intriguingly, a variety of rigorous individual studies on human-
erived samples offer identification lists rarely exceeding 2000
roteins, significantly less than the totals seen from the analysis of

ower organisms. This highlights that increased complexity reduces
he probability of identification, by a factor only partly dependent
n the proteome size [29]. Reduced probability arises in part from
he greater dynamic range of protein expression within human
amples, and its effect on LC/MS-based protein identification ([30]
nd see below). Existing strategies are simply better adapted to
he dynamic range of expression for simple systems (∼104 for
east [7]) than they are for higher organism (e.g. >1011 for human
lasma [31]). Probabilities are further reduced by the greater het-
rogeneity within individual proteins, at the level of isoforms and
ost-translational modifications, to the extent that “signal split-
ing” conspires to reduce identification rates in unusual ways.
or example, variable glycosylation can affect the fractionation of
roteins and peptides by either size, charge or hydrophobicity, dif-
using protein levels across multiple fractions in separation systems
ased on these principles.

It is useful to dissect the capacity issues associated with modern
ottom-up methods in some additional detail, prior to considering
ew developments in the area of complex protein mixture anal-
sis. If we define “identification probability” as the likelihood of
enerating a unique protein identification within a sample of a
iven complexity, then we see that there is a relationship between
his probability, protein dynamic range and the number of unique
roteins present in the sample. This can be represented by Fig. 4.

ncreasing the amount of sample loaded into any given proteome
nalysis “engine” reaches a point where the identification probabil-
ty saturates [32–34], beyond which further sample increases are
enerally wasteful (Fig. 4a).

However, digests of protein mixtures generate pools of peptides
hat tax the sequencing speed of modern instruments, such that
ny single analysis usually misses “sequenceable” peptides. It has
een demonstrated that replicate sample analysis can increase the
umber of proteins identified in a sample of a fixed mass, reflecting
quasi-stochastic quality to the peptide selection process during
ass analysis [35]. However, the full benefit of this replication is

eally only seen when the dynamic range of expression is lower
Fig. 4b), because the selection process is typically driven by peptide
ntensity.

Issues of high sample dynamic range can be addressed in part
y fractionating the peptide pool using two or more dimensions of
eparation. This may also be implemented at the protein level, and
s perhaps the most successful way to do so [36]. However, fraction-
tion by chromatography or electrophoresis does not discriminate
ased on peptide abundance levels but rather simply creates a
eries of less complex mixtures. Here, we use the term “complex-
ty” to simply indicate the number of unique peptides present in
he sample. Although increasing the dimensions of sample frac-
ionation generally increases the number of proteins identified in
sample of a given size (Fig. 4c), the greatest impact on the depth
f coverage in a sample should be seen in samples that are less
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

omplex to begin with. This may seem odd at first, but the primary
unction of any fractionation strategy is to reduce the complexity of
he pools of peptides, so that the mass spectrometer has sufficient
ime to fully interrogate their contents and so that ion suppression
s eased [29]. For any given multidimensional fractionation scheme,
ality in the fractionation of protein or peptide pools. In all cases, lines represent a
given probability that any one protein would be correctly identified, at the speci-
fied sample composition. Numbers are to provide context to the trends and though
reasonable, are not intended to be rigorous applied.

this will have its greatest impact in samples with fewer numbers of
proteins where the total pool of peptides is smaller [37]. The reader
is directed to thoughtful discussions of issues related to sample
complexity, fractionation, dynamic range and sequencing rates by
de Godoy et al. [7,29].

2.5. An assessment
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

The impact of these considerations on sample requirements and
analysis time is best evaluated by assessing the progress towards
full characterization of the yeast proteome. Approximately 2000
proteins were identified from 100 �g of protein extract, represent-
ing almost 2 days of LC–MS/MS instrument time [29]. The sample

dx.doi.org/10.1016/j.jpba.2011.02.012
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Other notable fractionation concepts that have improved depth
of proteome coverage include peptide ion mobility in the gas phase
prior to MS detection [49], and “replay” analyses that analyzes
a sample twice by collecting undersampled fractions for further
ARTICLEModel
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as fractionated at the protein level using SDS–PAGE and no
eplicates were conducted. Full coverage of the proteome (∼4400
roteins) required 2.2 mg of protein and 38 days of instrument time,
equiring an extensive fractionation scheme [7]. This highlights the
eclining benefits of such extra effort, as we have attempted to
apture in Fig. 4.

In summary, while very impressive depths of coverage for
he proteomes of simpler organisms have been achieved, and
lear progress is being made towards similar coverage of human
roteomes through community-based efforts, a set of analyti-
al realities become clear. Current efforts directed towards deep
roteome coverage remain large-scale endeavors requiring signif-

cant investment in equipment, informatics and sample handling.
lthough there are similarities to shotgun genome sequencing in

hat short “reads” of sequence are generated from which identity
s established, bottom-up proteomics methods differ because indi-
idual peptide reads rarely overlap, nor are all peptides detected.
n other words, identity is established with a minimum of sequence
ata in most cases, relying heavily on the detection of truly unique
eptides for any given identification. Such determinations require
n the order of 100 �g of protein per replicate for even fractional
overage of smaller proteomes.

. Technological developments in whole proteome analysis

The core component in any bottom-up proteomics engine
emains an LC–MS/MS instrument, where reversed-phase chro-
atography enriches and separates peptides for mass analysis and

equencing [3,38,39]. The most significant recent development in
his component involves the proliferation of high resolution mass
pectrometers such as the Orbitrap, allowing for routine measure-
ent of peptides at consistently high mass measurement accuracy

<1 ppm) and higher quality ion selection in the data-dependent
xperiment. This alone has improved the quality of protein identi-
cations as well as the quantity [40,41].

.1. Improving LC–MS/MS performance

This core component has been rendered more effective by the
radual standardization of sample introduction methods, and the
mplementation of new approaches. Most whole proteome analy-
es incorporate at least one dimension of protein separation now,
nd often more. GeLC–MS is the most widely used approach (see
ig. 1). A fusion of SDS–PAGE with LC–MS/MS, this involves the sep-
ration of protein in one dimension of a gel, followed by segmenting
he entire lane into a series of fractions for in-gel tryptic digestion,
nd then reversed-phase LC–MS/MS [42]. This has been particularly
ffective for smaller proteomes. Samples of higher complexity are
ow often fractionated with 2D-LC of proteins, involving either ion
xchange or isoelectric focusing in the first dimension, followed by
eversed phase (e.g. IPAS) [26,43]. If the samples contain a num-
er of proteins at very high abundance, as in plasma, this protein
ractionation step is usually fronted by immunodepletion for their
emoval. For example, blended antibody columns are available for
xtracting albumin, IgGs, transferrin, fibrinogen and 16 other abun-
ant proteins from plasma [44]. This enriches the remaining protein
nd is a very effective way of reducing the sample dynamic range.
uch reagents are becoming available for a wider variety of organ-
sms, including plants for the removal of Rubisco [45].

.2. Recent developments in peptide and protein fractionation
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

One of the more successful additions to sample fractionation
ethods involves peptide-level isoelectric focusing (Fig. 5) [46].
ith the addition of devices facilitating the recovery of peptides

rom IPG strips, it has been shown that this means of separation
Fig. 5. Schematic of the setup used for OFFGEL electrophoresis [46].
Reprinted with permission from Molecular & Cellular Proteomics.

provides complementary coverage to the conventional GeLC–MS
method and higher identification rates overall [37]. It has become
a key approach in the full proteome analyses of simpler organisms
and will likely find considerable use going forward. However, it is
important to stress that complementarity with GeLC–MS means
that both should be used, if one expects to maximize proteome
coverage.

Whatever the precise protocol, replicate sample analysis in
GeLC–MS has become a fixture in whole proteome experiments,
not to test for reproducibility as would usually be the case, but as
a means to increase the number of peptides identified as discussed
above. This is a simple approach, but one that delivers declining
benefits with each additional replicate; three or four runs are usu-
ally sufficient to maximize the benefit of this approach [13,47,48].
This is demonstrated in the recent study by Wang et al. [36].
Although it showed that inclusion of a protein-level IEF separation
can compensate for replicate analysis, with an overall equivalency
in sample consumption and instrument time (Fig. 6), replication
would presumably be beneficial here as well.
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

Fig. 6. Experimental outline for a 2D and a 3D proteome processing method, using
the same amount of protein. Authors show that incorporating a simple protein frac-
tionation step (micro-sol IEF) can largely compensate for replicate gel band analysis
[36].
Reprinted with permission from the American Chemical Society.

dx.doi.org/10.1016/j.jpba.2011.02.012
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eprinted with permission from the American Chemical Society.

nspection [50]. It should be clear at this point that depth of
roteome coverage using processes that feed a data-dependent
C–MS/MS core are close to “hitting a wall”. While there is always
he possibility for an unseen disruptive technology, increased sam-
le processing is not likely to deliver whole proteome analyses on

arge numbers of samples, except in highly specialized laboratories.

.3. Improvements in peptide ion fragmentation

Looking back, the greatest impact in depth of coverage has been
chieved through advancements in MS methods and technology,
ith the associated development of computational tools [1]. One

ctivity in this area that is worth highlighting is the development
f new ion fragmentation technology, involving electron capture or
lectron transfer dissociation [51–53]. When compared to conven-
ional collisionally-induced dissociation (CID), this fragmentation
echnology provides longer sequence “reads” for larger peptides
ut no real benefit for smaller peptides, where CID excels. The two
ragmentation methods therefore complement each other. Swaney
t al. have developed a more sophisticated approach to a data-
ependent experiment on this basis [54]. Peptide ions detected at
given point in chromatography time are assessed for the greatest

ikelihood of a successful sequence event, and then metered out
o CID or ETD accordingly. This comes with no extra sample frac-
ionation, and generates almost 40% more peptide identifications
ompared to CID alone.

A very recent work by the same lab incorporated five different
roteases to obtain near-complete coverage of the yeast proteome,

n concert with this “decision-tree” approach [55]. This is impres-
ive, in part because it only required a conventional 2D peptide
eparation front-end. Each digest required only 12 LC–MS/MS runs,
or a total of approximately 5 days instrument time. Perhaps most
mportantly, there was a >2-fold increase in average sequence cov-
rage using this method (Fig. 7), and overlapping peptides should
eturn a true “shotgun” style quality to the bottom up method, as in
enome sequencing. This would aid in sequence-building exercises,
omething that a purely tryptic digestion does not deliver.

.4. Departing from the data-driven experiment
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

Various other strategies have emerged, designed to utilize the
S data more effectively and address the quasi-stochastic nature

f conventional data-dependent experiments. Accurate mass tags
AMTs) rely upon prior identification of peptides, after which they
an be identified in subsequent analyses based solely upon accurate
ation and on (b) protein sequence coverage as a function of protein abundance [55].

mass measurements of the peptide, as well as their retention time
in a standardized chromatographic method [56,57]. This can work
very well, as the number of peptides “recognized” by the instru-
ment is no longer determined by a selection and sequencing event.
The most rigorous approach requires the mining of MS/MS data in
the form of a reference database, after which the method becomes
very effective in subsequent analyses [58]. Accurate retention time
prediction software may have a role in building these reference
databases as well [59,60]. In general, the idea of mining pre-existing
datasets, in the form of spectral searching or otherwise, represents
an important trend in proteomics [61].

3.5. Developments in bioinformatics

Databases built on prior acquisitions of MS/MS data will only
be valuable if the resulting peptide identifications are accurate,
but evaluating accuracy is not a trivial undertaking. This informat-
ics problem has been embraced by many labs engaged in whole
proteome analysis, and centers upon statistically-based determina-
tions of global false discovery rates (FDR’s) or local false discovery
rates (fdr’s), also referred to as posterior error probabilities [62].
The former is a metric that returns an assessment of the error rate
in the entire set of spectra searched, but does not inherently con-
vey a quality assessment of individual spectra. The latter seeks to do
this. Both methods have their place, but in large-scale undertakings
such as described in this review, the FDR approach perhaps has the
greatest utility [63]. It requires the use of decoy databases in order
assess the null distribution for the dataset tested. This allows for a
straightforward calculation of the global error rate.

To obtain greater confidence in any particular spectral match, a
series of methods have been developed in order to tease out the null
distribution from the datasets submitted to a search. Most base the
probability of a match upon the scores that database search engines
assign to all candidate peptides for any given MS/MS spectrum [64].
Originally built from training sets of data characterized by a high
confidence in both correct and incorrect assignments, discriminat-
ing functions can be generated that essentially translate the scores
(and other useful information) into probabilities for the correct-
ness of each individual peptide assignment. Currently there is less
reliance on training sets, as techniques are used to generate these
discriminating functions from the distribution of scores returned
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

from a search of any given large dataset. The reader is referred to
seminal articles and reviews in the area for additional information
[65–69].

Here, the most significant point we wish to emphasize relates to
the threshold for successful protein identification. These are obvi-

dx.doi.org/10.1016/j.jpba.2011.02.012
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xtracted ion chromatogram of the proteotypic peptide (a) after and (b) before imm

usly based upon peptide data, but in large-scale analyses the
ssociation between peptides has been erased, because of the global
igestion step. Referred to as the “protein inference problem”, the
ethods used for significance determination are direct extensions

f the methods used for peptides [70]. The “two-peptide” require-
ent for protein identification often seen in the literature has been

hown to be overly conservative; a metric based on calculated error
ates as described above in generally regarded as a better approach
69].

Returning to the notion of databases assembled from annotated
eptide MS/MS spectra, we see that error evaluation is required.
esources such as PeptideAtlas [71] have applied error quantifica-
ion to data generated from a variety of sources, such that error rates
an be determined both for individual identifications and across
he whole atlas [72,73]. This sort of community-driven approach
o curation leads to new opportunities for spectral searching and
as been pursued by other groups as well [61,74]. The massive
mounts of peptide MS/MS data being generated has also supported
rowing sophistication in the theoretical prediction of peptide ion
ragmentation spectra, including fragment abundance levels and
ragmentation “rules” [75,76]. While the rules are not of the sort
hat are rigorously obeyed, the accumulated knowledge in gas-
hase ion chemistry has allowed for surprising utility in the area of
simulated” spectral libraries, both for CID and for ETD fragmenta-
ion [77].

. Targeted proteomics

Whole-proteome analyses have considerable appeal in sys-
ems biology, but the previous sections highlight that the
igestion–fractionation–LC–MS/MS paradigm might be approach-

ng a practical limit. However, alternative paradigms related to
argeted spectral acquisitions are emerging, which may pro-
ide greater dynamic range, simplicity in sample processing, and
igher confidence in identifications. When large-scale studies are
urveyed, only ∼5% of all MS/MS scans collected lead to the identifi-
ation of unique peptides [55]. This may seem surprisingly low, but
t reflects the many areas where redundancy and error can arise in
uch experiments. The notion of targeted proteomics has emerged,
ere pre-existing data are mined to identify only unique peptides,
ith the attributes required for serving as “biomarkers” for their

espective proteins of origin [78–80]. Targeting the mass spectrom-
ter may therefore deliver a more effective use of available scan
ime and increase the depth of proteome coverage.
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

.1. SRM methods

The targeting approach implements triple quadrupole (QQQ)
ass spectrometers for monitoring unique peptides in a selective
(DGGAWGAEQR), monitoring the 523.7/230.1 transition in a targeted experiment.
ffinity isolation from 2.5 mg/ml serum protein digest [92].

and sensitive fashion. Driven by the long history of applications
pharmaceutical analysis, these instruments permit the isolation
of a peptide ion and a highly-discriminating peptide fragment
ion, and apply this dual isolation capability as a very selective
sample “filter” referred to as a transition [81,82]. This pro-
cess is referred to as selective reaction monitoring (SRM, the
favored term) or multiple reaction monitoring (MRM). Transi-
tion monitoring can offer extremely high sensitivity and dynamic
range to the process of peptide monitoring, relative to the data-
driven approach described earlier. The stochastic nature of ion
selection is removed entirely, in favor of monitoring known
peptides with known elution times. Modern QQQ instruments
can monitor well over 1000 peptides/hour and the methods are
very portable [80,83]. As a result, inter-lab reproducibility can
greatly exceed that of the conventional method. The main chal-
lenge in establishing appropriate filters involves the selection
of the peptides and transitions, and then establishing assays
for these selections. Here, the repositories of data from prior
large-scale sequencing efforts are highly useful, combined with
bioinformatic approaches [84]. When considering yeast, on aver-
age there is a high expectation for multiple proteotypic peptides
per protein [85]. This should offer sufficient flexibility in assay
development.

As protein standards are not available in most cases, one
approach to SRM assay development involves cost-effective syn-
thesis of the unique peptides. Large-scale initiatives are attempting
to define proteome-wide collections of such peptides with corre-
sponding validations of transitions. Monitoring all transitions for
peptides would not be very effective, so the best approach involves
a scheduling of transition sets, according to peptide elution time
[86]. This provides the capacity required (>1000 peptides), which
would otherwise be restricted to 50 or less, based on considerations
of instrument duty cycle.

However, SRMs do not necessarily offer the perfect filter. In
highly complex mixtures redundancies will occur, and caution has
been advised that assay design consider selectivity not just sensi-
tivity [87,88]. A partial response has involved the selection of three
or more transitions for any given peptide, allowing for inclusion
of an intensity pattern to help generate specificity [89]. While this
is promising, it involves a larger number of transitions and there-
fore a reduction in multiplexing capacity. An interesting alternative
seeks to implement an extra dimension to the transition, in the
hope of increasing selectivity [90]. A further alternative involves
raising antibodies to proteotypic peptides, and using these in
spectrometry—Go big or go home? J. Pharm. Biomed. Anal. (2011),

immunoaffinity-style cartridges for both increased selectivity and
sensitivity in multiplexed SRM assays [91]. While this does increase
the cost associated with implementation, the format offers excel-
lent opportunities for targeting low-abundance proteins within
a simple workflow (Fig. 8) [92]. Nevertheless, the potential for

dx.doi.org/10.1016/j.jpba.2011.02.012
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edundancies will ensure that high resolution reversed-phase chro-
atography remains a key part of any monitoring solution.

.2. SRM applications

The most enlightening studies to date involve targeted analyses
f the yeast proteome. These offer an opportunity for compar-
tive analysis with “conventional” data-driven high throughput
ndertakings, of the sort described earlier. One study tracks the
ynamical effect of glucose repression on a targeted segment of the
roteome. This involved monitoring 45 different proteins selected
rom the networks engaged in carbon metabolism, and track-
ng their flux as a function of glucose consumption, on the way
o a metabolic shift towards fermentative growth in the result-
ng ethanol-rich media [79]. The analytical procedures need only
oncern us here. Generally, the SRM multiplexed assay required
wo peptides and three transitions per peptide, for every protein
n the list. This assay was built with the aid of synthetic pep-
ides, as discussed, and spanned proteins expressed at over three
rders of magnitude in concentration. Once developed, the assay
equired less than 1 h per sample without any proteome fractiona-
ion. Because some of these proteins were of low abundance, using a
ata-driven approach would require extensive fractionation, where
ach sample “data point” would need over 1 month of analysis time.

This remarkable improvement comes at the cost of
argeting—only those proteins hypothesized to be involved
ould be monitored. However, this sort of capability can stim-
late many interesting experiments. With a moderate degree of
ractionation, for example peptide separation using off-gel elec-
rophoresis, one can achieve significant improvements in dynamic
ange and still be in a position to monitor multiple samples in a
ealistic lab setting [79]. This sort of capability has been applied to
he selective monitoring of all kinases and phosphatases in yeast
80], and a related version to phosphotyrosine profiling in human

ammary epithelial cells [93].
Applications to plasma analysis are emerging, but this biofluid

emains the most challenging of samples. Depletion of high abun-
ance proteins may still be required, in order to access the lower
bundance components of the proteome with high confidence. At
his stage of development, expectations in terms of precision and
nter-lab reproducibility are being considered, and assays are being
eveloped for higher abundance proteins [94].

. Conclusions and perspective

Proteomics remains a field driven by developments in pep-
ide mass spectrometry. Bottom-up methods still offer the most
owerful means of achieving deep-proteome coverage. We have
ttempted to show that approaches built upon a continuous
discovery” cycle, where peptides are selected for mass analysis
ased upon data-driven approaches, are very labor intensive. It is
nlikely that they will be applied to larger-scale initiatives, where
roteomes require replicative analysis over multiple timepoints.
owever, these initiatives will remain essential. At a minimum,

hey will populate databases of proteotypic peptides upon which
argeted, multiplexed SRM assays can be built. This type of assay
ill require considerable investment in peptide selection and tran-

ition selection, an activity that will always require a research
omponent, although certain assays may approach an “off the shelf”
uality. For example, targeted assays of kinases may find early
Please cite this article in press as: M.F. Khan, et al., Proteomics by mass
doi:10.1016/j.jpba.2011.02.012

doption in the pharmaceutical and drug discovery. Requests for
ssay development and implementation will work their way into
he labs of analysts more frequently engaged in small molecule
RM development. This is the natural home for such activities,
nd therefore we encourage this community to engage in discus-

[

[
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sions with proteomics researchers around the optimization of such
assays.
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